Bicompletions of Distance Matrices
نویسنده
چکیده
In the practice of information extraction, the input data are usually arranged into pattern matrices, and analyzed by the methods of linear algebra and statistics, such as principal component analysis. In some applications, the tacit assumptions of these methods lead to wrong results. The usual reason is that the matrix composition of linear algebra presents information as flowing in waves, whereas it sometimes flows in particles, which seek the shortest paths. This wave-particle duality in computation and information processing has been originally observed by Abramsky. In this paper we pursue a particle view of information, formalized in distance spaces, which generalize metric spaces, but are slightly less general than Lawvere’s generalized metric spaces. In this framework, the task of extracting the ’principal components’ from a given matrix of data boils down to a bicompletion, in the sense of enriched category theory. We describe the bicompletion construction for distance matrices. The practical goal that motivates this research is to develop a method to estimate the hardness of attack constructions in security.
منابع مشابه
Bicompletions of Distance Matrices To Samson Abramsky on the occasion of his 60th birthday
In the practice of information extraction, the input data are usually arranged into pattern matrices, and analyzed by the methods of linear algebra and statistics, such as principal component analysis. In some applications, the tacit assumptions of these methods lead to wrong results. The usual reason is that the matrix composition of linear algebra presents information as flowing in waves, whe...
متن کاملCentric connectivity index by shell matrices
Relative centricity RC values of vertices/atoms are calculated within the Distance Detour and Cluj-Distance criteria on their corresponding Shell transforms. The vertex RC distribution in a molecular graph gives atom equivalence classes, useful in interpretation of NMR spectra. Timed by vertex valences, RC provides a new index, called Centric Connectivity CC, which can be useful in the topologi...
متن کاملTowards Concept Analysis in Categories: Limit Inferior as Algebra, Limit Superior as Coalgebra
While computer programs and logical theories begin by declaring the concepts of interest, be it as data types or as predicates, network computation does not allow such global declarations, and requires concept mining and concept analysis to extract shared semantics for different network nodes. Powerful semantic analysis systems have been the drivers of nearly all paradigm shifts on the web. In ...
متن کاملComputational aspect to the nearest southeast submatrix that makes multiple a prescribed eigenvalue
Given four complex matrices $A$, $B$, $C$ and $D$ where $Ainmathbb{C}^{ntimes n}$ and $Dinmathbb{C}^{mtimes m}$ and let the matrix $left(begin{array}{cc} A & B C & D end{array} right)$ be a normal matrix and assume that $lambda$ is a given complex number that is not eigenvalue of matrix $A$. We present a method to calculate the distance norm (with respect to 2-norm) from $D$ to ...
متن کاملOn the powers of fuzzy neutrosophic soft matrices
In this paper, The powers of fuzzy neutrosophic soft square matrices (FNSSMs) under the operations $oplus(=max)$ and $otimes(=min)$ are studied. We show that the powers of a given FNSM stabilize if and only if its orbits stabilize for each starting fuzzy neutrosophic soft vector (FNSV) and prove a necessary and sufficient condition for this property using the associated graphs of the FNSM. ...
متن کامل